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Abstract Lateral spreading and flow failure are amongst the most destructive effects of liquefaction.
Estimation of thehazard of lateral spreading requires characterization of subsurface conditions, principally
soil density, fine content, groundwater conditions, site topography and seismic characteristics. However,
inaccuracies in the measurement or estimation of the influencing parameters have always been a major
concern and, thus, various statistical approaches have been improvised to subdue the effect of such
inaccuracies in the prediction of future events.

Very few empirical correlations consider the effect of uncertainties in predicting the extent of lateral
movement. Hence, in this article, an innovative approach, based on robust optimization, has been utilized
to enumerate the effect of such uncertainties. In order to assess the merits of the proposed approach, a
database containing 526 data points of liquefaction-induced lateral ground spreading case histories from
eighteen different earthquakes, is used.

The identification technique used in this article is based on the robust counterpart of the least squares
problem, which is a second order cone problem, and is efficiently solved by the interior point method. A
definition of uncertainty, based on the Frobenius norm of the data, is introduced and examined against the
correlation coefficients for various empiricalmodels, including a new linearmodel, and, thereby, optimum
values are determined.

The results suggest that in comparison with Al Bawwab models, the robust method is a better pattern
recognition tool for datasets with degrees of uncertainty. It is further shown that logarithmic correlations
perform better in deterministic valuation, whereas, considering uncertainty, they give similar degrees of
accuracy to the new linear model.

© 2013 Sharif University of Technology. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Liquefaction occurs in saturated sand deposits, due to ex-
cess pore water pressure increase, during earthquake induced
cyclic shear stresses. It can cause serious to destructive damage
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to structures. The liquefactionmechanism includes ground sub-
sidence, flow failure and lateral spreading, among other effects.
Perhaps one of the earliest observed cases of lateral spreading
is the San Francisco 1906 earthquake [1]. Lateral spreading in-
volves themovement of relatively intact soil blocks on a layer of
liquefied soil toward a free face or incised channel. It can also in-
duce different forms of ground deformation, which can be very
destructive, in the vicinity of natural and artificial slopes.

A number of approaches have been proposed for prediction
of the magnitude of lateral ground displacements under differ-
ent conditions. Al Bawwab [2] has categorized themethods into
the following four groups:

(1) Numerical analyses in the form of finite element and/or
finite difference techniques;
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Nomenclature

DH Horizontal displacement
D5015 Average grain size for granular materials within

T15
F15 Average fines content (finer than 75 lm) for

granular materials included within T15
H Average thickness of the liquefied layer
L Distance to the free face from the point of

displacement
LSI Liquefaction severity index
MW Earthquake moment magnitude
(N1)60 Corrected standard penetration test (SPT) blow

count number
R Nearest horizontal distance of the seismic energy

source to the site
R∗ Distance coefficient that is a function of earth-

quake magnitude
R2 Coefficient of determination
S Slope of ground surface
T Average thickness of the liquefied surface layer
T15 Cumulative thickness of saturated cohesion-less

soil layers with corrected SPT number (N1)60
less than 15

W Free face ratio
amax Maximum horizontal ground acceleration
β Ground surface slope angle
ϕ′eqv, liq The equivalent mobilized angle of internal

friction of liquefied
ay Yield acceleration
zcr Critical potentially liquefiable soil sub-layer

depth
ε Model correction term
θi, bi Constant of equations obtained empirically

(2) Simplified analytical methods;
(3) Soft computing techniques, and
(4) Empirical methods, developed, based on the assessment of

either laboratory test data or statistical analyses of lateral
spreading case histories.

However, viewing the approaches based on their basic
inputs, the approaches may be classified into the categories
shown in Figure 1.

However, all predictions based on any of the aforementioned
approaches require determination of input parameters, which
are prone to uncertainties and inaccuracies. The effect of any
inaccuracies of input data in the numerical and analytical
approach may be studied by a sensitivity analysis of the
predictions on various input data. Due to versatility, empirical
and semi-empirical correlations remain at the center of the
practice [1,2]. Some advanced forms of multi-linear regression
analysis or various forms of identification techniques have
been combined with empirical methods to arrive at better
evaluations of model parameters [3].

In this paper, a different approach to quantify the effect of
uncertainties on the evaluation of model parameters based on
the Robust Optimization Model is proposed. This model is the
robust counterpart of the least squares model, which is a Sec-
ond Order Cone Program (SOCP), in which, possible uncertain-
ties can reasonably be catered for [4]. Although SOCP haswidely
been used in operation research [5], to the authors’ knowledge,
this is the first attempt to apply this method to a geotechnical
Figure 1: Classification of the approaches of lateral spreading predictions.

problem. However, before discussion of the proposed method,
a brief review of some of the available approaches is presented.

2. Review of the available methods

Following the concept presented in Figure 1, two basic ap-
proaches are described here; computational and experimental.
In the latter approach, laboratory and/or field test results are
used in conjunction with case histories to develop empirical
correlations, whereas in computational methods, basic param-
eters are input into analytical or numerical models to predict
the extent of the effect.

In recent years, new identification techniques have further
enhanced the latter approach by providing fast and efficient
codes for development of empirical models.

A brief review of each approach is provided here:

2.1. Computational based methods

Numerical and analytical methods have been widely used in
geo-mechanics to simulate the patterns of kinematic behavior
under various loadings. The success of such methods is highly
dependent on the constitutivemodel and the input parameters.

The finite element or finite difference methods are perhaps
the most widely used numerical methods. However, these
procedures are highly dependent on material parameters that
are usually difficult to estimate, and, as a result, limited success
has been achieved in producing results that are comparable to
field observations [6]. Numerical methods can also be utilized
in conjunction with soft computing techniques to enhance or
produce databases.

Analytical models have also contributed to the development
of knowledge in this field. A number of simplified analytical
models have been utilized to simulate liquefaction induced
lateral spreading. The Sliding Block Model [7–10], Minimum
Potential Energy Model [11,12], Shear Strength Loss and Strain
Re-hardening Model [13], and the Viscous Model [14] are
examples of this approach.

2.2. Experimental based methods

Due to the complexities of the phenomenon, the afore-
mentioned constitutive models, as well as simplified analyti-
cal methods, have not succeeded in capturing the full effect.
Thus, empirical models based on case histories have remained
the more popular method in past decades.

Hamada et al. [15], Youd and Perkins [16], Bardet [13], Youd
et al. [1] and Kanibir [17] introduced empirical correlations and
Multi-Linear Regression (MLR) models for the assessment of
liquefaction induced lateral spreading.

Al Bawwab [2] compiled a database of recorded cases
of lateral spreading, used SPSS 2004 software for statistical
analysis of the data and arrived at a number of correlations for
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Table 1: Empirical correlations for prediction of the lateral displacement.

Method Subset Model Limitations

Hamada et al. (1986) DH = 0.75H1/2θ1/3 Number of case histories and variables
Youd and Perkins
(1987)

LogDH = −3.49 − 1.86Log R + 0.98Mw Number of case histories and specific soil
profile and topography conditions

Bardet et al. (1999) Free-face Log (DH + 0.01) = −17.372 + 1.248Mw − 0.923Log R − 0.014R +

0.685LogW + 0.3Log T15 + 4.826Log (100 − F15) − 1.091D5015

Number of case histories and mistakes in
databases that correct in youd models and
uncertanity not assumedSlopping

ground
Log (DH + 0.01) = −14.152 + 0.988Mw − 1.049Log R − 0.011R +

0.318Log S + 0.619Log T15 + 4.287Log (100 − F15) − 0.705D5015

Youd et al. (2002) Free-face LogDH = −16.713+1.532Mw −1.406Log R∗
−0.012R+0.592LogW +

0.540Log T15 + 3.413Log (100 − F15) − 0.795Log (D5015 + 0.1 mm)

5 ≤ W ≤ 20% 6 ≤ MW ≤ 8, 0.1 ≤ S ≤

6%, 1 ≤ T15 ≤ 15 m, gravelly and/or very
silty soils, critical depth up to 10 mSlopping

ground
LogDH = −16.213+ 1.532Mw − 1.406Log R∗

− 0.012R+ 0.338Log S +

0.540Log T15 + 3.413Log (100 − F15) − 0.795Log (D5015 + 0.1 mm)

Kanibir (2003) Free-face LogDH = −20.71 + 25.32LogMw − 1.39Log R∗
− 0.009R +

1.15LogW + 0.19T150.5 − 0.02F15 − 0.84Log (D5015 + 0.1 mm)
Uncertanity not assumed

Slopping
ground

LogDH = −7.52 + 8.44LogMw + 0.001R∗
− 0.23R + 0.11S +

0.6Log T15 − 0.22F15 − 0.89LogD5015

Al Bawwab (2005)

Model 1 LogDH = b1·LSI+b2·ay/amax+b3·tanβ/ tanϕ′eqv, liq+b4·zcr+b5·Mw+

b6 · W + b7 Probabilistic analysis includedModel 2 LogDH = b1 · LSI + b2 · ay/amax + b3 · tanβ/ tanϕ′eqv, liq + b4 · zcr +

b5 · Mw + b6 · Log S + b7 · LogW + b8
Model 3 LogDH = b1 · LSI + b2 · ay/amax + b3 · tanβ/ tanϕ′eqv, liq + b4 ·

Log zcr + b5 · LogMw + b6 · amax + b7 · Log S + b8 · LogW + b9
Model 4 LogDH = [(θ1LSI + θ2)ay/amax + (θ3LSI + θ4) tanβ/ tanϕ′eqv, liq +

(θ5LSI + θ6)Log zcr + (θ7LSI + θ8)LogMw + (θ9LSI + θ10)amax +

(θ11LSI + θ12)Log S + (θ13LSI + θ14)LogW + (θ15LSI + θ16) + ε]
determination of lateral displacement. In order to enhance the
accuracy of the models, a maximum likelihood approach was
considered and the effect of data uncertainty was taken into
account by probabilistic methods.

Kramer and Baska [18] proposed a variation to the correla-
tion presented by Youd et al. [1]. They established their model
on a square root transformation of displacement rather than the
logarithmic transformation used.

On a different note, Zhang et al. [19], based on empirical
correlation on a cumulative shear strain model, introduced a
‘‘Lateral Displacement Index (LDI)’’ calculated by integration of
maximum shear strain over potentially liquefiable layers, and
thenused it in a couple of simple correlations for ‘‘free-face’’ and
‘‘ground slope’’ cases. Idriss and Boulanger [20] used a different
cumulative strain model to arrive at LDI.

Table 1 shows some of the empirical correlations found in
the literature. Themodels proposed by Zhang et al. [19], Kramer
and Baska [18] and Idriss and Boulanger [20] have not been
included in this table, since they are directly comparable.

The difficulties posed by the fact that the phenomenon is de-
pendent on multiple parameters have partly been alleviated by
soft computing techniques, such as fuzzy logic, neuron com-
puting, probabilistic reasoning and genetic algorithms. These
methods of decision-making and optimization have firmly es-
tablished themselves as indispensible tools for modeling natu-
ral phenomena.

Artificial Neural Networks (ANN) have been used for
modeling seismically induced displacement, based on the same
database used in the Multi Linear Regression model developed
by Bartlet and Youd [21].

In the light of the above mentioned techniques, a new
approach is proposed here, which combines the benefits of
empirical models with an optimization method that considers
the uncertainty of each parameter independently.

3. The proposed correlation

Following the trend proposed by Al Bawwab [2], ay/amax,
tanβ/ tanϕ′eqv, liq and zcr variables are used instead of
Table 2: Deprive variables for predicting the lateral displacement.

Descriptive variables of a particular soil sub-layer.

Seismological MW Moment magnitude scale of
the earthquake [21,24–26]Duration of shaking

amax Maximum Horizontal Ground
Acceleration (g)Intensity of shaking

Topographical W Free-face ratio = H/L(%)

Soil profile slope
S Ground Surface Slope (%)
Ground conditions
β Ground surface slope angle

(degrees) = tan−1(S/100)Ground conditions

Geotechnical tanφ′eqv, liq/ tanβ FS against gravitational forces
Gravity force
LSI Liquefaction severity index
Distribution of
liquefaction potential
through the depth
ay/amax FS against sliding
Sliding force
zc Critical depth
Effective potentially
liquefiable depth

T15, F15, and D5015, which were used in some of the earlier
models. This can be considered a step towards reaching a
more descriptive group of variables and, consequently, a more
powerful representative correlation. The descriptive variables
are explained in Table 2, where ay is the yield acceleration equal
to tan(ϕ′eqv, liq-β)with finite slope assumption, and ϕ′eqv, liq
is the equivalentmobilized angle of internal friction of liquefied
or potentially liquefiable soils [22,23].

Among the descriptive variables, there are two topological
parameters (W and S), which refer to sloping sites without a
free face (i.e.W = 0) and level sites with a free face (i.e. S = 0)
as in Figure 2.

With these definitions, case histories can be divided into two
subsets of sloping siteswithout a free face and non-sloping sites
with a steep face [1,2,17].
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Table 3: Sample of the database.

DH Mw amax/g S W LSI Zcr ay/amax tanβ/ tanϕ′ Earthquake

1 1 7.9 0.6 ± 0.15 0.6 0 3.55 ± 0.89 3.5 ± 0.88 0.07 ± 0.026 0.124 ± 0.03 1906 San Francisco–USA [1]
2 1.09 7.5 0.19 ± 0.05 0.31 0 5.8 ± 0.09 1.09 ± 0.08 0.264 ± 0.09 0.058 ± 0.013 1964 Niigata–Japan [1]
3 1.37 9.2 0.21 ± 0.05 0.7 7.03 6.18 ± 1.55 4.57 ± 1.14 0.594 ± 0.168 0.053 ± 0.007 1964 Alaska [1]
4 1.68 6.4 0.55 ± 0.14 1.23 0 0.01 ± 0 11.89 ± 2.97 1.488 ± 0.373 0.015 ± 0 1971 San Fernando–USA [1]
5 0 7.5 0.12 ± 0.03 3.5 1.03 1.25 ± 0.31 5.56 ± 1.39 0.864 ± 0.256 0.252 ± 0.03 1976 Guatemala [23]
6 1 7.4 0.2 ± 0.05 1 0 0.96 ± 0.24 12.19 ± 3.05 0.537 ± 0.158 0.085 ± 0.012 1977 Argentina [27]
7 0.86 6.5 0.51 ± 0.13 2 4.69 1.65 ± 0.16 3.36 ± 1.55 0.406 ± 0.107 0.088 ± 0.006 1979 Imperial Valley–USA [1]
8 0 6.9 0.6 ± 0.15 11 0 2.06 ± 0.52 1.74 ± 0.44 0 ± 0.027 1.392 ± 0.152 1983 Borah Peak–USA [1]
9 1.14 7.7 0.25 ± 0.06 0.56 0 3.01 ± 0.75 3 ± 0.75 0.567 ± 0.157 0.038 ± 0.004 1983 Nihonkai-Chubu–Japan [1]

10 0.2 6.6 0.21 ± 0.05 0.47 41.38 1.94 ± 0.48 3.05 ± 0.76 0.345 ± 0.117 0.061 ± 0.013 1988 Superstition Hills–USA [1]
11 0.5 7 0.13 ± 0.03 0 10 1.11 ± 0.28 6.34 ± 1.59 0.717 ± 0.22 0 ± 0 1989 Loma Prieta–USA [1]
12 5 7.6 0.2 ± 0.05 0.5 50 7.73 ± 1.93 9.23 ± 2.31 0.249 ± 0.085 0.091 ± 0.019 1990 Luzon–Phillipines [28]
13 1 6.7 0.52 ± 0.13 1 0 0 ± 0 14.1 ± 3.53 2.718 ± 0.68 0.007 ± 0 1994 Northridge–USA [1]
14 0.4 6.9 0.6 ± 0.15 0.1 0 5.08 ± 1.27 13.5 ± 3.38 0.358 ± 0.094 0.005 ± 0 1995 Hyogoken-Nambu–Japan [1]
15 5.84 7.6 0.43 ± 0.11 1 5 3.47 ± 0.87 2.8 ± 0.7 0.118 ± 0.04 0.165 ± 0.032 1999 Chi Chi–Taiwan [29]
16 2.2 7.4 0.4 ± 0.1 1.6 0 4.54 ± 1.14 9.8 ± 2.45 0.138 ± 0.054 0.225 ± 0.053 1999 Kocaeli (Izmit)–Turkey [30]
17 0.3 6.5 0.12 ± 0.03 1 0 0.56 ± 0.14 2.75 ± 0.69 0.371 ± 0.134 0.183 ± 0.039 2003 San Simeon–USA [31]
18 0.2 7.9 0.31 ± 0.08 0.1 0 2.29 ± 0.57 11 ± 2.75 0.368 ± 0.106 0.009 ± 0.001 2003 Tokachi-Oki–Japan [32]
Figure 2: Topography related descriptive variables.

In order to provide bases for comparison of the efficiency
of the models under various uncertainties, the first three
correlations proposed by Al Bawwab [2] are used in this study.
Due to the fact that the parameters of the fourth correlation are
in multiple forms, the concept of multiple uncertainties could
not be defined. Thus, the fourth correlation was substituted
by a slightly different linear correlation. Furthermore the
correlations are cast into the two aforementioned geometrical
sub-sets:

Model 1:

W = 0 LogDH = a1Mw + a2S + a3LSI + a4Zcr + a5ay/amax +

a6 tanβ/ tanϕ′
+ a7

S = 0 LogDH = a1Mw + a2W + a3LSI + a4Zcr + a5ay/amax +

a6 tanβ/ tanϕ′
+ a7.

Model 2:

W = 0 LogDH = a1Mw +a2Log S+a3LSI+a4Zcr+a5ay/amax+

a6 tanβ/ tanϕ′
+ a7

S = 0 LogDH = a1Mw+a2LogW+a3LSI+a4Zcr+a5ay/amax+

a6 tanβ/ tanϕ′
+ a7.

Model 3:

W = 0 LogDH = a1LogMw + a2amax/g + a3Log S + a4LSI +

a5Log Zcr + a6ay/amax + a7 tanβ/ tanϕ′
+ a8

S = 0 LogDH = a1LogMw + a2amax/g + a3LogW + a4LSI +

a5Log Zcr + a6ay/amax + a7 tanβ/ tanϕ′
+ a8.

New Linear Model:

W = 0 DH = a1Mw + a2amax/g + a3S + a4LSI + a5Zcr +

a6ay/amax + a7 tanβ/ tanϕ′
+ a8

S = 0 DH = a1Mw + a2amax/g + a3W + a4LSI + a5Zcr +

a6ay/amax + a7 tanβ/ tanϕ′
+ a8.

Since it is important to evaluate the effect of each coefficient
separately, the correlations are cast into matrix form, Ax = b,
where Am×n, (m > n) and bn×1.
Classical regression analysis is:

min ∥Ax − b∥ . (1)

However, this approach does not provide for various degrees of
uncertainty and, thus, a more versatile approach is called for,
which is discussed in the following section.

In order to examine the potentials of each of the correla-
tions, the database compiled by Youd et al. [1], including 1906
San Francisco–USA, 1964 Prince William Sound–Alaska, 1964
Niigata–Japan, 1971 San Fernando–USA, 1979 Imperial Val-
ley–USA, 1983 Borah Peak–USA, 1983 Nihonkai-Chubu–Japan,
1987 Superstition Hills–USA, 1989 Loma Prieta–USA, and 1995
Hyogoken-Nanbu–Japan, and 91 case histories from 7 differ-
ent earthquakes added by Al Bawwab [2], including the 1976
Guatemala, 1977 San Juan-Argentina, 1990 Luzon–Philippines,
1994 Northridge–USA, 1995 Hyogoken-Nanbu-Japan, 1999 Ko-
caeli (Izmit)–Turkey, 1999 Chi Chi–Taiwan, 2003 San Simeon-
USA earthquake and 2003 Tokachi-Oki–Japan earthquakes, is
used. The distribution of descriptive variable characteristics for
all case histories has been shown in Figure 3.

In Table 3, a sample of the data is presented. As noted
previously [2], the data contain uncertainty and, thus, the
associated variation must be considered in any evaluation,
which is not directly possible in the MLR analysis.

4. Robust optimization model

In mathematical optimization models, it is commonly
assumed that the data inputs are precise and the influence
of parameter uncertainties on the optimality and feasibility
of the models are ignored. It is, therefore, conceivable that
as the data differ from the assumed nominal values, the
generated optimal solution may violate critical constraints
and perform poorly from an objective function point of view.
These observations motivate the need for methodologies in
mathematical optimization models that account for solutions
immune to data uncertainty [4,5]. For example, inaccuracies
enter in the field measurements of lateral displacement or
critical depth in case histories, just as all other natural
phenomenon measurements. Such inaccuracies exist in other
influencing parameters and can cause deviation. If such
deviations are presented as boundaries of the central point
of the data (Figure 4), and the true data point could exist
at any point within this boundary, the Robust Optimization
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Figure 3: Distribution of descriptive variable characteristics for all case histories.
Figure 4: Robust and regression methods.

seeks to minimize maximum error with any particular level
of uncertainty. In the particular case of zero uncertainty, this
approach reduces to least squares analysis [33].

In the past decade, there have been considerable develop-
ments in the theory of robust convex optimization. However,
under the robust framework found in the literature, the robust
models generally lead to an increase in computational complex-
ity over the nominal problem, which is an issue when solving
large problems [4,5].

In the sequel, a robust model for the least squares method is
presented. Supposing that the level of uncertainty of databases
is known and it is equal to ρ. Then, the robust model minimizes
the worst case residual, i.e:

min
x

max
∥[E,r]∥F≤ρ

∥(A + E) x − (b + r)∥ , (2)
where E and r are uncertainties in A and b, respectively and the
matrix norm is the Frobenius norm, which, for a given matrix,

A, is defined as ∥A∥F =
n

i
m

j A2
ij

 1
2 . Obviously, the problem

Eq. (2) cannot be solved using classical optimization algorithms.
However, it can be written in the following Second Order Conic
Programming (SOCP) form [34]:

min (t + ρs)
∥Ax − b∥ ≤ t
1 + ∥x∥2 < s

(3)

and solved using efficient software like SeDuMi [35], which
is an interior point based software for solving SOCP and semi
definite optimization. It may be noted from an unconstrained
least squares problem, a SOCP is developed that is harder to
solve, but is more conservative.

Thus, the problem Eq. (3) is rewritten in the dual form of
SeDuMi’s input format, namely:
max bTy
c − Aty ∈ K

(4)

where:

c =


0

−b
0
1

0n×1

 , At
=


−1 0 01×n
0m×1 0m×1 −A
0 −1 01×n
0 0 01×n

0n×1 0n×1 −In×n

 ,

b =


−1
−ρ
0n×1


, Y =

t
s
x


,

(5)

K = Qm+1 × Qn+2, (6)

where Qk denotes the second order cone in Rk and is defined as
follows:

Qk =

x ∈ Rk

| ∥x∥ ≤ x1

, x = (x1, . . . , xk−1)

T . (7)
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Figure 5: Variation of constant coefficients of different models, versus uncertainties.
By this definition, onenowcan easily see that the first constraint
in Eq. (3) belongs to Qm+1 and the second one belongs to Qm+2.
These are denoted in SeDuMi’s format by the product of these
two second order cones, namely K .

Then, SeDuMi is called by the following command for four
different values of uncertainty parameter ρ:

[x, y] = sedumi(At, b, c, K), (8)

where At denotes the matrix, At , in Eq. (5). b, c also are taken
from Eq. (5) and K also is given by Eq. (6). Moreover, x and y
denote the solutions of Eq. (4) and their dual problem.

In order to consider uncertainty, a new parameter is intro-
duced:

Uncertainity =
ρ

∥Data∥F
× 100, (9)
Table 4: The most sensitive coefficients.

Models Topological condition
Free face Gently sloping

Model 1 a7 a7
Model 2 a7 a2
Model 3 a2 a2 & a7
The new model a2 a2 & a7

where ∥Data∥F is the Frobenius norm of data matrices, as de-
fined before.

Using Eq. (9), the uncertainty of the matrices for the two
topological conditions were evaluated to be 10.33% for free face
and 17.08% for the gently sloping condition. In other words,
the matrix of error or uncertainty (± values) has been formed
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Table 5: Constants coefficient for each model by uncertainties.

S = 0 W = 0
Model 1 Model 2 Model 3 New model Model 1 Model 2 Model 3 New Model

a1 −0.0034 −0.0042 −0.0258 0.1298 −0.0143 −0.0109 −0.0191 0.0934
a2 0.0053 0.0441 −0.0424 −0.0121 0.0214 0.0708 −0.0421 −0.0138
a3 0.0707 0.0733 0.0527 0.0617 0.059 0.0598 0.1244 0.0338
a4 −0.0169 −0.0151 0.0706 0.2991 0.0046 0.0054 0.0592 0.1727
a5 −0.0023 −0.0018 −0.0483 −0.0756 −0.0236 −0.0232 0.024 0.0559
a6 0.0028 0.0037 −0.0149 −0.001 −0.0023 −0.0011 −0.0353 −0.0095
a7 −0.0061 −0.0087 0.011 0.0008 −0.0043 −0.0039 −0.0097 −0.0009
a8 – – −0.0388 0.0129 – – −0.0242 0.0103

R2(%) 54 68 68 71 81 82 83 83
Figure 6: Variation of regression coefficient (R2) of different models, versus
uncertainties.

and the Frobenius norm of the matrix of error divided into the
Frobenius norm of the data matrix (without ± values).

5. The results

As stated earlier, optimization of the coefficients is the main
task of this paper. Thus, the variations of the coefficients were
evaluated against various levels of uncertainty for the two
topological condition of free-face and gently sloping. The results
are summarized in Figure 5.

These figures show that by increasing the uncertainty, the
variability approaches a stable value.

The above figures constitute a sensitivity analysis for each
coefficient of the variables against levels of uncertainty. In other
words, the coefficients with greater variations show that their
respective variables have greater sensitivity. Themost sensitive
coefficients are presented in Table 4.

It must be pointed out at this stage that if uncertainty (%) is
set to zero, the method reduces to an ordinary MLR technique.

It can be noted that parameters amax/g and tanβ/ tanϕ′ are
most sensitive.
In order to determine the accuracy of each model, the
statistical value of R2, as an absolute fraction of variance, can
be used, defined as follows [36]:

R2
= 1


M
i=0

(Yi(Model) − Yi(Actual))
2

M
i=1

(Yi(Actual))2

 . (10)

The response of each model to various levels of uncertainty is
shown in Figure 6.

These figures show that while the aforementioned models
can provide reasonably good predictions for cases in which
uncertainties are neglected, their applications to cases with
high uncertainty cannot provide the same levels of accuracy.
Under each sub-set, the proposed approach achieves better
predictions with assumed uncertainties, and at mentioned
uncertainty, the predictions of the new correlation supersedes
other correlations.

Based on the approach presented in this study, the most
optimum coefficients for each of the above mentioned models
(with the aforementioned levels of uncertainty) are presented
in Table 5 and Figure 7.

6. Conclusions

Avoidance of uncertainty in any statistical analysis of
natural phenomenon such as lateral spreading is impossible.
MLR methods alone cannot cater for this effect and, thus,
probabilistic approaches are required.

In this study, a robust optimization method is developed
for evaluation of the effect of uncertainty of each parameter
independently on the outcome of analysis. This is a step
forward in comparison with limited probabilistic approaches
that considers the variation of parameters singularly.

A new parameter was introduced to express the levels of
uncertainty of the data. Also, for the dataset used, minimum
percentages of uncertainty, for which the proposed correlation
performs better, were evaluated for the two conditions of free
face and gently sloping, to be 10.33% and 17.08%, respectively.

The use of the robust optimizationmethod allows evaluation
of the sensitivity of parameter coefficients against uncertainty.
This analysis determined the most sensitive parameters to
uncertainty. Itwas shown that formodels 1 and2of the free face
condition, the constant coefficient (a7) was the most sensitive
coefficient, which is an indication of the unsuitability of the
models. For the other two models under the same geometrical
condition, the coefficient of amax/g variable (a2) is the most
sensitive, which is as expected.

For the gently sloping condition, the constant coefficient
of the first model (a7), the coefficient of slope (Log S) (a2)
in model 2, and for the other models, coefficients of amax/g
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Figure 7: Validation of different models in acceptable uncertainties.
and tanβ/ tanϕ′, are the most sensitive. It may, thus, be
concluded that the latter two models are performing logically,
since the two important variables have the greatest effect on
the outcome.
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Statistical comparison of the models shows that under very
small values of uncertainty, the accuracy of model 3 is partic-
ular, and logarithmic models in general are better. However,
under high levels of data uncertainty (in particular the afore-
mentioned parameters), the new linear model performs bet-
ter, and based on this approach, the most optimum values for
each coefficient of each model was calculated and fed into the
model for prediction of lateral spreading. Needless to say, this
model reverts to ordinary regression analysis in the absence of
uncertainty.
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